MakeItFrom.com
Menu (ESC)

SAE-AISI 1015 Steel vs. C93800 Bronze

SAE-AISI 1015 steel belongs to the iron alloys classification, while C93800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1015 steel and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
96
Elongation at Break, % 20 to 32
9.7
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 73
35
Tensile Strength: Ultimate (UTS), MPa 390 to 440
200
Tensile Strength: Yield (Proof), MPa 210 to 370
120

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
140
Melting Completion (Liquidus), °C 1470
940
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 52
52
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.9
9.1
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 18
51
Embodied Water, L/kg 45
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
17
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 360
70
Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 14 to 15
6.1
Strength to Weight: Bending, points 15 to 16
8.4
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 12 to 14
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0.13 to 0.18
0
Copper (Cu), % 0
75 to 79
Iron (Fe), % 99.13 to 99.57
0 to 0.15
Lead (Pb), % 0
13 to 16
Manganese (Mn), % 0.3 to 0.6
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0