MakeItFrom.com
Menu (ESC)

SAE-AISI 1017 Steel vs. N10675 Nickel

SAE-AISI 1017 steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1017 steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 20 to 30
47
Fatigue Strength, MPa 170 to 270
350
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
85
Shear Strength, MPa 280 to 290
610
Tensile Strength: Ultimate (UTS), MPa 420 to 460
860
Tensile Strength: Yield (Proof), MPa 220 to 390
400

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 53
11
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
80
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 1.4
16
Embodied Energy, MJ/kg 18
210
Embodied Water, L/kg 45
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
330
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 400
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 15 to 16
26
Strength to Weight: Bending, points 16 to 17
22
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 13 to 14
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.15 to 0.2
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 99.11 to 99.55
1.0 to 3.0
Manganese (Mn), % 0.3 to 0.6
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1