MakeItFrom.com
Menu (ESC)

SAE-AISI 1018 Steel vs. EN 1.6920 Steel

Both SAE-AISI 1018 steel and EN 1.6920 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1018 steel and the bottom bar is EN 1.6920 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 140
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 27
19
Fatigue Strength, MPa 180 to 270
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 280 to 300
400
Tensile Strength: Ultimate (UTS), MPa 430 to 480
640
Tensile Strength: Yield (Proof), MPa 240 to 400
420

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
23
Embodied Water, L/kg 46
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 430
470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 17
22
Strength to Weight: Bending, points 16 to 17
21
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 14 to 15
19

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.17
Chromium (Cr), % 0
0.5 to 1.0
Iron (Fe), % 98.8 to 99.25
95.7 to 98
Manganese (Mn), % 0.6 to 0.9
1.0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.35
Nickel (Ni), % 0
0.3 to 0.7
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.015
Vanadium (V), % 0
0.050 to 0.1