MakeItFrom.com
Menu (ESC)

SAE-AISI 1019 Steel vs. C84800 Brass

SAE-AISI 1019 steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1019 steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17 to 29
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 470 to 520
230
Tensile Strength: Yield (Proof), MPa 250 to 430
100

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1460
950
Melting Onset (Solidus), °C 1420
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 52
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
27
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 110
34
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 500
53
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17 to 18
7.3
Strength to Weight: Bending, points 17 to 18
9.6
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 15 to 16
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.15 to 0.2
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 98.7 to 99.15
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7