MakeItFrom.com
Menu (ESC)

SAE-AISI 1020 Steel vs. 7076 Aluminum

SAE-AISI 1020 steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 1020 steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
160
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17 to 28
6.2
Fatigue Strength, MPa 180 to 250
170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
27
Shear Strength, MPa 280
310
Tensile Strength: Ultimate (UTS), MPa 430 to 460
530
Tensile Strength: Yield (Proof), MPa 240 to 380
460

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
460
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 52
140
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
35
Electrical Conductivity: Equal Weight (Specific), % IACS 12
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 100
31
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 380
1510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 15 to 16
49
Strength to Weight: Bending, points 16 to 17
48
Thermal Diffusivity, mm2/s 14
54
Thermal Shock Resistance, points 13 to 14
23

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0.18 to 0.23
0
Copper (Cu), % 0
0.3 to 1.0
Iron (Fe), % 99.08 to 99.52
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.8
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15