MakeItFrom.com
Menu (ESC)

SAE-AISI 1020 Steel vs. Titanium 6-6-2

SAE-AISI 1020 steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1020 steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 28
6.7 to 9.0
Fatigue Strength, MPa 180 to 250
590 to 670
Poisson's Ratio 0.29
0.32
Reduction in Area, % 45 to 57
17 to 23
Shear Modulus, GPa 73
44
Shear Strength, MPa 280
670 to 800
Tensile Strength: Ultimate (UTS), MPa 430 to 460
1140 to 1370
Tensile Strength: Yield (Proof), MPa 240 to 380
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 52
5.5
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
40
Density, g/cm3 7.9
4.8
Embodied Carbon, kg CO2/kg material 1.4
29
Embodied Energy, MJ/kg 18
470
Embodied Water, L/kg 45
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 100
89 to 99
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
34
Strength to Weight: Axial, points 15 to 16
66 to 79
Strength to Weight: Bending, points 16 to 17
50 to 57
Thermal Diffusivity, mm2/s 14
2.1
Thermal Shock Resistance, points 13 to 14
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0.18 to 0.23
0 to 0.050
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 99.08 to 99.52
0.35 to 1.0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4