MakeItFrom.com
Menu (ESC)

SAE-AISI 1020 Steel vs. S44626 Stainless Steel

Both SAE-AISI 1020 steel and S44626 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1020 steel and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 28
23
Fatigue Strength, MPa 180 to 250
230
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 280
340
Tensile Strength: Ultimate (UTS), MPa 430 to 460
540
Tensile Strength: Yield (Proof), MPa 240 to 380
350

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
14
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 45
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 380
300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
26
Strength to Weight: Axial, points 15 to 16
19
Strength to Weight: Bending, points 16 to 17
19
Thermal Diffusivity, mm2/s 14
4.6
Thermal Shock Resistance, points 13 to 14
18

Alloy Composition

Carbon (C), % 0.18 to 0.23
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 99.08 to 99.52
68.1 to 74.1
Manganese (Mn), % 0.3 to 0.6
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0