MakeItFrom.com
Menu (ESC)

SAE-AISI 1025 Steel vs. EN 1.4589 Stainless Steel

Both SAE-AISI 1025 steel and EN 1.4589 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1025 steel and the bottom bar is EN 1.4589 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 28
17
Fatigue Strength, MPa 190 to 280
260
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 290 to 310
400
Tensile Strength: Ultimate (UTS), MPa 450 to 500
650
Tensile Strength: Yield (Proof), MPa 250 to 420
440

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
810
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
25
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
34
Embodied Water, L/kg 45
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 110
96
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16 to 18
23
Strength to Weight: Bending, points 17 to 18
22
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 14 to 16
23

Alloy Composition

Carbon (C), % 0.22 to 0.28
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Iron (Fe), % 99.03 to 99.48
78.2 to 85
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0
0.3 to 0.5