MakeItFrom.com
Menu (ESC)

SAE-AISI 1025 Steel vs. Grade 4 Titanium

SAE-AISI 1025 steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1025 steel and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 140
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 28
17
Fatigue Strength, MPa 190 to 280
340
Poisson's Ratio 0.29
0.32
Reduction in Area, % 45 to 57
28
Shear Modulus, GPa 73
41
Shear Strength, MPa 290 to 310
390
Tensile Strength: Ultimate (UTS), MPa 450 to 500
640
Tensile Strength: Yield (Proof), MPa 250 to 420
530

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 52
19
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 18
500
Embodied Water, L/kg 45
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 18
40
Strength to Weight: Bending, points 17 to 18
37
Thermal Diffusivity, mm2/s 14
7.6
Thermal Shock Resistance, points 14 to 16
46

Alloy Composition

Carbon (C), % 0.22 to 0.28
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 99.03 to 99.48
0 to 0.5
Manganese (Mn), % 0.3 to 0.6
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
98.6 to 100
Residuals, % 0
0 to 0.4