MakeItFrom.com
Menu (ESC)

SAE-AISI 1025 Steel vs. C38000 Brass

SAE-AISI 1025 steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1025 steel and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17 to 28
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 290 to 310
230
Tensile Strength: Ultimate (UTS), MPa 450 to 500
380
Tensile Strength: Yield (Proof), MPa 250 to 420
120

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
110
Melting Completion (Liquidus), °C 1460
800
Melting Onset (Solidus), °C 1420
760
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 52
110
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 45
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 110
50
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
74
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16 to 18
13
Strength to Weight: Bending, points 17 to 18
14
Thermal Diffusivity, mm2/s 14
37
Thermal Shock Resistance, points 14 to 16
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.22 to 0.28
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 99.03 to 99.48
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5