MakeItFrom.com
Menu (ESC)

SAE-AISI 1025 Steel vs. C53800 Bronze

SAE-AISI 1025 steel belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1025 steel and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 28
2.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Shear Strength, MPa 290 to 310
470
Tensile Strength: Ultimate (UTS), MPa 450 to 500
830
Tensile Strength: Yield (Proof), MPa 250 to 420
660

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
800
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 52
61
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.4
3.9
Embodied Energy, MJ/kg 18
64
Embodied Water, L/kg 45
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 110
18
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
2020
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16 to 18
26
Strength to Weight: Bending, points 17 to 18
22
Thermal Diffusivity, mm2/s 14
19
Thermal Shock Resistance, points 14 to 16
31

Alloy Composition

Carbon (C), % 0.22 to 0.28
0
Copper (Cu), % 0
85.1 to 86.5
Iron (Fe), % 99.03 to 99.48
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0.3 to 0.6
0 to 0.060
Nickel (Ni), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2