MakeItFrom.com
Menu (ESC)

SAE-AISI 1030 Steel vs. AISI 418 Stainless Steel

Both SAE-AISI 1030 steel and AISI 418 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1030 steel and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 160
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14 to 22
17
Fatigue Strength, MPa 210 to 320
520
Poisson's Ratio 0.29
0.28
Reduction in Area, % 39 to 48
50
Shear Modulus, GPa 73
77
Shear Strength, MPa 330 to 360
680
Tensile Strength: Ultimate (UTS), MPa 530 to 590
1100
Tensile Strength: Yield (Proof), MPa 300 to 490
850

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
770
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1460
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
15
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 18
41
Embodied Water, L/kg 46
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 100
170
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 650
1830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 21
38
Strength to Weight: Bending, points 18 to 20
29
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 17 to 19
40

Alloy Composition

Carbon (C), % 0.28 to 0.34
0.15 to 0.2
Chromium (Cr), % 0
12 to 14
Iron (Fe), % 98.7 to 99.12
78.5 to 83.6
Manganese (Mn), % 0.6 to 0.9
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tungsten (W), % 0
2.5 to 3.5