MakeItFrom.com
Menu (ESC)

SAE-AISI 1030 Steel vs. EN 1.4922 Stainless Steel

Both SAE-AISI 1030 steel and EN 1.4922 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1030 steel and the bottom bar is EN 1.4922 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 22
16
Fatigue Strength, MPa 210 to 320
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 330 to 360
470
Tensile Strength: Ultimate (UTS), MPa 530 to 590
770
Tensile Strength: Yield (Proof), MPa 300 to 490
550

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
720
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
24
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
7.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
40
Embodied Water, L/kg 46
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 650
770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 21
27
Strength to Weight: Bending, points 18 to 20
24
Thermal Diffusivity, mm2/s 14
6.5
Thermal Shock Resistance, points 17 to 19
27

Alloy Composition

Carbon (C), % 0.28 to 0.34
0.17 to 0.23
Chromium (Cr), % 0
10 to 12.5
Iron (Fe), % 98.7 to 99.12
83.5 to 88.2
Manganese (Mn), % 0.6 to 0.9
0.3 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.015
Vanadium (V), % 0
0.2 to 0.35