MakeItFrom.com
Menu (ESC)

SAE-AISI 1030 Steel vs. CC140C Copper

SAE-AISI 1030 steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1030 steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 160
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14 to 22
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 530 to 590
340
Tensile Strength: Yield (Proof), MPa 300 to 490
230

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
310
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
77
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
78

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 18
41
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 100
34
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 650
220
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19 to 21
10
Strength to Weight: Bending, points 18 to 20
12
Thermal Diffusivity, mm2/s 14
89
Thermal Shock Resistance, points 17 to 19
12

Alloy Composition

Carbon (C), % 0.28 to 0.34
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 98.7 to 99.12
0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0