MakeItFrom.com
Menu (ESC)

SAE-AISI 1030 Steel vs. CR024A Copper

SAE-AISI 1030 steel belongs to the iron alloys classification, while CR024A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1030 steel and the bottom bar is CR024A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14 to 22
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 530 to 590
230
Tensile Strength: Yield (Proof), MPa 300 to 490
140

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
370
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 18
41
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 100
31
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 650
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19 to 21
7.1
Strength to Weight: Bending, points 18 to 20
9.3
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 17 to 19
8.1

Alloy Composition

Carbon (C), % 0.28 to 0.34
0
Copper (Cu), % 0
99.9 to 99.985
Iron (Fe), % 98.7 to 99.12
0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.040
Silver (Ag), % 0
0 to 0.015
Sulfur (S), % 0 to 0.050
0