MakeItFrom.com
Menu (ESC)

SAE-AISI 1030 Steel vs. C48500 Brass

SAE-AISI 1030 steel belongs to the iron alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1030 steel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 22
13 to 40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 330 to 360
250 to 300
Tensile Strength: Ultimate (UTS), MPa 530 to 590
400 to 500
Tensile Strength: Yield (Proof), MPa 300 to 490
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 100
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 650
120 to 500
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19 to 21
14 to 17
Strength to Weight: Bending, points 18 to 20
15 to 17
Thermal Diffusivity, mm2/s 14
38
Thermal Shock Resistance, points 17 to 19
13 to 17

Alloy Composition

Carbon (C), % 0.28 to 0.34
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 98.7 to 99.12
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4