MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. AISI 348H Stainless Steel

Both SAE-AISI 1035 steel and AISI 348H stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 13 to 21
40
Fatigue Strength, MPa 210 to 340
200
Poisson's Ratio 0.29
0.28
Reduction in Area, % 40 to 45
51
Shear Modulus, GPa 73
77
Shear Strength, MPa 360 to 370
400
Tensile Strength: Ultimate (UTS), MPa 570 to 620
580
Tensile Strength: Yield (Proof), MPa 300 to 530
230

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.9
Embodied Energy, MJ/kg 18
56
Embodied Water, L/kg 46
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
190
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20 to 22
21
Strength to Weight: Bending, points 19 to 21
20
Thermal Diffusivity, mm2/s 14
4.1
Thermal Shock Resistance, points 18 to 20
13

Alloy Composition

Carbon (C), % 0.32 to 0.38
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 98.6 to 99.08
63.8 to 73.6
Manganese (Mn), % 0.6 to 0.9
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1