MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. EN 1.0490 Steel

Both SAE-AISI 1035 steel and EN 1.0490 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is EN 1.0490 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 21
26
Fatigue Strength, MPa 210 to 340
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 360 to 370
280
Tensile Strength: Ultimate (UTS), MPa 570 to 620
440
Tensile Strength: Yield (Proof), MPa 300 to 530
280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
47
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
21
Embodied Water, L/kg 46
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
100
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 22
16
Strength to Weight: Bending, points 19 to 21
16
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 18 to 20
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.32 to 0.38
0 to 0.2
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 98.6 to 99.08
96 to 99.55
Manganese (Mn), % 0.6 to 0.9
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 0.45
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.070