MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. Grade 37 Titanium

SAE-AISI 1035 steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 21
22
Fatigue Strength, MPa 210 to 340
170
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40 to 45
34
Shear Modulus, GPa 73
40
Shear Strength, MPa 360 to 370
240
Tensile Strength: Ultimate (UTS), MPa 570 to 620
390
Tensile Strength: Yield (Proof), MPa 300 to 530
250

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1460
1650
Melting Onset (Solidus), °C 1420
1600
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 12
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 18
500
Embodied Water, L/kg 46
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
76
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20 to 22
24
Strength to Weight: Bending, points 19 to 21
26
Thermal Diffusivity, mm2/s 14
8.4
Thermal Shock Resistance, points 18 to 20
29

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0.32 to 0.38
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.6 to 99.08
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
96.9 to 99
Residuals, % 0
0 to 0.4