MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. Nickel 686

SAE-AISI 1035 steel belongs to the iron alloys classification, while nickel 686 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 13 to 21
51
Fatigue Strength, MPa 210 to 340
410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
77
Shear Strength, MPa 360 to 370
560
Tensile Strength: Ultimate (UTS), MPa 570 to 620
780
Tensile Strength: Yield (Proof), MPa 300 to 530
350

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
980
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1420
1340
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 51
9.8
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
70
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
12
Embodied Energy, MJ/kg 18
170
Embodied Water, L/kg 46
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
320
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 20 to 22
24
Strength to Weight: Bending, points 19 to 21
21
Thermal Diffusivity, mm2/s 14
2.6
Thermal Shock Resistance, points 18 to 20
21

Alloy Composition

Carbon (C), % 0.32 to 0.38
0 to 0.010
Chromium (Cr), % 0
19 to 23
Iron (Fe), % 98.6 to 99.08
0 to 5.0
Manganese (Mn), % 0.6 to 0.9
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4