MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. C51900 Bronze

SAE-AISI 1035 steel belongs to the iron alloys classification, while C51900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 21
14 to 29
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Shear Strength, MPa 360 to 370
320 to 370
Tensile Strength: Ultimate (UTS), MPa 570 to 620
380 to 620
Tensile Strength: Yield (Proof), MPa 300 to 530
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
66
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
14
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 18
51
Embodied Water, L/kg 46
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
680 to 1450
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 22
12 to 19
Strength to Weight: Bending, points 19 to 21
13 to 18
Thermal Diffusivity, mm2/s 14
20
Thermal Shock Resistance, points 18 to 20
14 to 22

Alloy Composition

Carbon (C), % 0.32 to 0.38
0
Copper (Cu), % 0
91.7 to 95
Iron (Fe), % 98.6 to 99.08
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5