MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. C72900 Copper-nickel

SAE-AISI 1035 steel belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 13 to 21
6.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Shear Strength, MPa 360 to 370
540 to 630
Tensile Strength: Ultimate (UTS), MPa 570 to 620
870 to 1080
Tensile Strength: Yield (Proof), MPa 300 to 530
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
950
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
29
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
4.6
Embodied Energy, MJ/kg 18
72
Embodied Water, L/kg 46
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
2030 to 3490
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20 to 22
27 to 34
Strength to Weight: Bending, points 19 to 21
23 to 27
Thermal Diffusivity, mm2/s 14
8.6
Thermal Shock Resistance, points 18 to 20
31 to 38

Alloy Composition

Carbon (C), % 0.32 to 0.38
0
Copper (Cu), % 0
74.1 to 78
Iron (Fe), % 98.6 to 99.08
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.6 to 0.9
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3