MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. S20161 Stainless Steel

Both SAE-AISI 1035 steel and S20161 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 21
46
Fatigue Strength, MPa 210 to 340
360
Poisson's Ratio 0.29
0.28
Reduction in Area, % 40 to 45
45
Shear Modulus, GPa 73
76
Shear Strength, MPa 360 to 370
690
Tensile Strength: Ultimate (UTS), MPa 570 to 620
980
Tensile Strength: Yield (Proof), MPa 300 to 530
390

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 400
870
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1420
1330
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
12
Density, g/cm3 7.8
7.5
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
39
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
360
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
26
Strength to Weight: Axial, points 20 to 22
36
Strength to Weight: Bending, points 19 to 21
29
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 18 to 20
22

Alloy Composition

Carbon (C), % 0.32 to 0.38
0 to 0.15
Chromium (Cr), % 0
15 to 18
Iron (Fe), % 98.6 to 99.08
65.6 to 73.9
Manganese (Mn), % 0.6 to 0.9
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0 to 0.050
0 to 0.040