MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. S20910 Stainless Steel

Both SAE-AISI 1035 steel and S20910 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 13 to 21
14 to 39
Fatigue Strength, MPa 210 to 340
310 to 460
Poisson's Ratio 0.29
0.28
Reduction in Area, % 40 to 45
56 to 62
Shear Modulus, GPa 73
79
Shear Strength, MPa 360 to 370
500 to 570
Tensile Strength: Ultimate (UTS), MPa 570 to 620
780 to 940
Tensile Strength: Yield (Proof), MPa 300 to 530
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1080
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
13
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
4.8
Embodied Energy, MJ/kg 18
68
Embodied Water, L/kg 46
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
460 to 1640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20 to 22
28 to 33
Strength to Weight: Bending, points 19 to 21
24 to 27
Thermal Diffusivity, mm2/s 14
3.6
Thermal Shock Resistance, points 18 to 20
17 to 21

Alloy Composition

Carbon (C), % 0.32 to 0.38
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Iron (Fe), % 98.6 to 99.08
52.1 to 62.1
Manganese (Mn), % 0.6 to 0.9
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3

Comparable Variants