SAE-AISI 1035 Steel vs. S32050 Stainless Steel
Both SAE-AISI 1035 steel and S32050 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is S32050 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 160 to 180 | |
220 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
210 |
Elongation at Break, % | 13 to 21 | |
46 |
Fatigue Strength, MPa | 210 to 340 | |
340 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
81 |
Shear Strength, MPa | 360 to 370 | |
540 |
Tensile Strength: Ultimate (UTS), MPa | 570 to 620 | |
770 |
Tensile Strength: Yield (Proof), MPa | 300 to 530 | |
370 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
310 |
Maximum Temperature: Mechanical, °C | 400 | |
1100 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1410 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 51 | |
12 |
Thermal Expansion, µm/m-K | 12 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
1.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.0 | |
2.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
31 |
Density, g/cm3 | 7.8 | |
8.0 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
6.0 |
Embodied Energy, MJ/kg | 18 | |
81 |
Embodied Water, L/kg | 46 | |
210 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 79 to 99 | |
290 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 250 to 740 | |
330 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 20 to 22 | |
27 |
Strength to Weight: Bending, points | 19 to 21 | |
23 |
Thermal Diffusivity, mm2/s | 14 | |
3.3 |
Thermal Shock Resistance, points | 18 to 20 | |
17 |
Alloy Composition
Carbon (C), % | 0.32 to 0.38 | |
0 to 0.030 |
Chromium (Cr), % | 0 | |
22 to 24 |
Copper (Cu), % | 0 | |
0 to 0.4 |
Iron (Fe), % | 98.6 to 99.08 | |
43.1 to 51.8 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 to 1.5 |
Molybdenum (Mo), % | 0 | |
6.0 to 6.6 |
Nickel (Ni), % | 0 | |
20 to 23 |
Nitrogen (N), % | 0 | |
0.21 to 0.32 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.035 |
Silicon (Si), % | 0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.050 | |
0 to 0.020 |