SAE-AISI 1037 Steel vs. Grade 17 Titanium
SAE-AISI 1037 steel belongs to the iron alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1037 steel and the bottom bar is grade 17 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 14 to 20 | |
27 |
Fatigue Strength, MPa | 220 to 340 | |
160 |
Poisson's Ratio | 0.29 | |
0.32 |
Reduction in Area, % | 40 to 45 | |
34 |
Shear Modulus, GPa | 73 | |
38 |
Shear Strength, MPa | 360 to 390 | |
180 |
Tensile Strength: Ultimate (UTS), MPa | 580 to 640 | |
270 |
Tensile Strength: Yield (Proof), MPa | 320 to 540 | |
210 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
420 |
Maximum Temperature: Mechanical, °C | 400 | |
320 |
Melting Completion (Liquidus), °C | 1460 | |
1660 |
Melting Onset (Solidus), °C | 1420 | |
1610 |
Specific Heat Capacity, J/kg-K | 470 | |
540 |
Thermal Conductivity, W/m-K | 51 | |
23 |
Thermal Expansion, µm/m-K | 12 | |
8.7 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
3.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.1 | |
7.3 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
36 |
Embodied Energy, MJ/kg | 18 | |
600 |
Embodied Water, L/kg | 46 | |
230 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 83 to 100 | |
68 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 270 to 780 | |
220 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 20 to 23 | |
17 |
Strength to Weight: Bending, points | 20 to 21 | |
21 |
Thermal Diffusivity, mm2/s | 14 | |
9.3 |
Thermal Shock Resistance, points | 18 to 20 | |
21 |
Alloy Composition
Carbon (C), % | 0.32 to 0.38 | |
0 to 0.080 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 98.5 to 99 | |
0 to 0.2 |
Manganese (Mn), % | 0.7 to 1.0 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.18 |
Palladium (Pd), % | 0 | |
0.040 to 0.080 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Sulfur (S), % | 0 to 0.050 | |
0 |
Titanium (Ti), % | 0 | |
99.015 to 99.96 |
Residuals, % | 0 | |
0 to 0.4 |