MakeItFrom.com
Menu (ESC)

SAE-AISI 1038 Steel vs. Nickel 908

SAE-AISI 1038 steel belongs to the iron alloys classification, while nickel 908 belongs to the nickel alloys. They have 41% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1038 steel and the bottom bar is nickel 908.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
180
Elongation at Break, % 14 to 20
11
Fatigue Strength, MPa 220 to 350
450
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
70
Shear Strength, MPa 370 to 390
800
Tensile Strength: Ultimate (UTS), MPa 590 to 640
1340
Tensile Strength: Yield (Proof), MPa 320 to 540
930

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
920
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 51
11
Thermal Expansion, µm/m-K 12
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
50
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
9.3
Embodied Energy, MJ/kg 18
140
Embodied Water, L/kg 46
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 790
2340
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 21 to 23
45
Strength to Weight: Bending, points 20 to 21
33
Thermal Diffusivity, mm2/s 14
2.9
Thermal Shock Resistance, points 19 to 20
61

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.3
Boron (B), % 0
0 to 0.012
Carbon (C), % 0.35 to 0.42
0 to 0.030
Chromium (Cr), % 0
3.8 to 4.5
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 98.6 to 99.05
35.6 to 44.6
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Nickel (Ni), % 0
47 to 51
Niobium (Nb), % 0
2.7 to 3.3
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.0050
Titanium (Ti), % 0
1.2 to 1.8