MakeItFrom.com
Menu (ESC)

SAE-AISI 1038 Steel vs. C48600 Brass

SAE-AISI 1038 steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1038 steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 20
20 to 25
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 370 to 390
180 to 230
Tensile Strength: Ultimate (UTS), MPa 590 to 640
280 to 360
Tensile Strength: Yield (Proof), MPa 320 to 540
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
110
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
28

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
47
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 790
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 23
9.5 to 12
Strength to Weight: Bending, points 20 to 21
12 to 14
Thermal Diffusivity, mm2/s 14
36
Thermal Shock Resistance, points 19 to 20
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0.35 to 0.42
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 98.6 to 99.05
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4