SAE-AISI 1039 Steel vs. Grade 32 Titanium
SAE-AISI 1039 steel belongs to the iron alloys classification, while grade 32 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1039 steel and the bottom bar is grade 32 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 14 to 18 | |
11 |
Fatigue Strength, MPa | 230 to 370 | |
390 |
Poisson's Ratio | 0.29 | |
0.32 |
Reduction in Area, % | 40 to 45 | |
28 |
Shear Modulus, GPa | 73 | |
40 |
Shear Strength, MPa | 380 to 420 | |
460 |
Tensile Strength: Ultimate (UTS), MPa | 610 to 690 | |
770 |
Tensile Strength: Yield (Proof), MPa | 340 to 580 | |
670 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
410 |
Maximum Temperature: Mechanical, °C | 400 | |
310 |
Melting Completion (Liquidus), °C | 1460 | |
1610 |
Melting Onset (Solidus), °C | 1420 | |
1560 |
Specific Heat Capacity, J/kg-K | 470 | |
550 |
Thermal Conductivity, W/m-K | 51 | |
7.5 |
Thermal Expansion, µm/m-K | 12 | |
8.2 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.1 | |
2.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
38 |
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
32 |
Embodied Energy, MJ/kg | 18 | |
530 |
Embodied Water, L/kg | 46 | |
180 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 88 to 94 | |
83 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 310 to 890 | |
2100 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 22 to 24 | |
47 |
Strength to Weight: Bending, points | 20 to 22 | |
41 |
Thermal Diffusivity, mm2/s | 14 | |
3.0 |
Thermal Shock Resistance, points | 19 to 22 | |
63 |
Alloy Composition
Aluminum (Al), % | 0 | |
4.5 to 5.5 |
Carbon (C), % | 0.37 to 0.44 | |
0 to 0.080 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 98.5 to 98.9 | |
0 to 0.25 |
Manganese (Mn), % | 0.7 to 1.0 | |
0 |
Molybdenum (Mo), % | 0 | |
0.6 to 1.2 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.11 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Silicon (Si), % | 0 | |
0.060 to 0.14 |
Sulfur (S), % | 0 to 0.050 | |
0 |
Tin (Sn), % | 0 | |
0.6 to 1.4 |
Titanium (Ti), % | 0 | |
88.1 to 93 |
Vanadium (V), % | 0 | |
0.6 to 1.4 |
Zirconium (Zr), % | 0 | |
0.6 to 1.4 |
Residuals, % | 0 | |
0 to 0.4 |