MakeItFrom.com
Menu (ESC)

SAE-AISI 1039 Steel vs. C49300 Brass

SAE-AISI 1039 steel belongs to the iron alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1039 steel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 18
4.5 to 20
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Shear Strength, MPa 380 to 420
270 to 290
Tensile Strength: Ultimate (UTS), MPa 610 to 690
430 to 520
Tensile Strength: Yield (Proof), MPa 340 to 580
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
88
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
26
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
50
Embodied Water, L/kg 46
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 94
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 890
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 24
15 to 18
Strength to Weight: Bending, points 20 to 22
16 to 18
Thermal Diffusivity, mm2/s 14
29
Thermal Shock Resistance, points 19 to 22
14 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0.37 to 0.44
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 98.5 to 98.9
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.7 to 1.0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5