MakeItFrom.com
Menu (ESC)

SAE-AISI 1039 Steel vs. C69700 Brass

SAE-AISI 1039 steel belongs to the iron alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1039 steel and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14 to 18
25
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 380 to 420
300
Tensile Strength: Ultimate (UTS), MPa 610 to 690
470
Tensile Strength: Yield (Proof), MPa 340 to 580
230

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 51
43
Thermal Expansion, µm/m-K 12
19

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
44
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 94
99
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 890
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 24
16
Strength to Weight: Bending, points 20 to 22
16
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 19 to 22
16

Alloy Composition

Carbon (C), % 0.37 to 0.44
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 98.5 to 98.9
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0.7 to 1.0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
2.5 to 3.5
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5