MakeItFrom.com
Menu (ESC)

SAE-AISI 1040 Steel vs. AWS BNi-9

SAE-AISI 1040 steel belongs to the iron alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1040 steel and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 570 to 640
580

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.4
9.3
Embodied Energy, MJ/kg 18
130
Embodied Water, L/kg 46
260

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 20 to 23
19
Strength to Weight: Bending, points 19 to 21
18
Thermal Shock Resistance, points 18 to 20
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0.37 to 0.44
0 to 0.060
Chromium (Cr), % 0
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 98.6 to 99.03
0 to 1.5
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
77.1 to 83.3
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5