MakeItFrom.com
Menu (ESC)

SAE-AISI 1040 Steel vs. Grade 3 Titanium

SAE-AISI 1040 steel belongs to the iron alloys classification, while grade 3 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1040 steel and the bottom bar is grade 3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 20
21
Fatigue Strength, MPa 220 to 340
300
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40 to 45
34
Shear Modulus, GPa 73
39
Shear Strength, MPa 350 to 390
320
Tensile Strength: Ultimate (UTS), MPa 570 to 640
510
Tensile Strength: Yield (Proof), MPa 320 to 530
440

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 12
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 18
510
Embodied Water, L/kg 46
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 96
100
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 760
910
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20 to 23
32
Strength to Weight: Bending, points 19 to 21
32
Thermal Diffusivity, mm2/s 14
8.6
Thermal Shock Resistance, points 18 to 20
37

Alloy Composition

Carbon (C), % 0.37 to 0.44
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.6 to 99.03
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4