MakeItFrom.com
Menu (ESC)

SAE-AISI 1040 Steel vs. C38000 Brass

SAE-AISI 1040 steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1040 steel and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 13 to 20
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 350 to 390
230
Tensile Strength: Ultimate (UTS), MPa 570 to 640
380
Tensile Strength: Yield (Proof), MPa 320 to 530
120

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
110
Melting Completion (Liquidus), °C 1460
800
Melting Onset (Solidus), °C 1420
760
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
110
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 96
50
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 760
74
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20 to 23
13
Strength to Weight: Bending, points 19 to 21
14
Thermal Diffusivity, mm2/s 14
37
Thermal Shock Resistance, points 18 to 20
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.37 to 0.44
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 98.6 to 99.03
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5