MakeItFrom.com
Menu (ESC)

SAE-AISI 1040 Steel vs. C89320 Bronze

SAE-AISI 1040 steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1040 steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 20
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 570 to 640
270
Tensile Strength: Yield (Proof), MPa 320 to 530
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 51
56
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
15

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.5
Embodied Energy, MJ/kg 18
56
Embodied Water, L/kg 46
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 96
38
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 760
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 23
8.5
Strength to Weight: Bending, points 19 to 21
10
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 18 to 20
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0.37 to 0.44
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 98.6 to 99.03
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.3
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5