SAE-AISI 1042 Steel vs. Grade 8 Babbitt Metal
SAE-AISI 1042 steel belongs to the iron alloys classification, while grade 8 Babbitt Metal belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1042 steel and the bottom bar is grade 8 Babbitt Metal.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 180 to 200 | |
15 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
24 |
Poisson's Ratio | 0.29 | |
0.41 |
Shear Modulus, GPa | 73 | |
8.5 |
Tensile Strength: Yield (Proof), MPa | 340 to 580 | |
23 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
46 |
Melting Completion (Liquidus), °C | 1460 | |
270 |
Melting Onset (Solidus), °C | 1420 | |
240 |
Specific Heat Capacity, J/kg-K | 470 | |
150 |
Thermal Conductivity, W/m-K | 52 | |
24 |
Thermal Expansion, µm/m-K | 12 | |
24 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
19 |
Density, g/cm3 | 7.8 | |
10 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
3.9 |
Embodied Energy, MJ/kg | 18 | |
53 |
Embodied Water, L/kg | 46 | |
840 |
Common Calculations
Resilience: Unit (Modulus of Resilience), kJ/m3 | 320 to 900 | |
11 |
Stiffness to Weight: Axial, points | 13 | |
1.3 |
Stiffness to Weight: Bending, points | 24 | |
9.2 |
Thermal Diffusivity, mm2/s | 14 | |
16 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.0050 |
Antimony (Sb), % | 0 | |
14 to 16 |
Arsenic (As), % | 0 | |
0.3 to 0.6 |
Bismuth (Bi), % | 0 | |
0 to 0.1 |
Cadmium (Cd), % | 0 | |
0 to 0.050 |
Carbon (C), % | 0.4 to 0.47 | |
0 |
Copper (Cu), % | 0 | |
0 to 0.5 |
Iron (Fe), % | 98.5 to 99 | |
0 to 0.1 |
Lead (Pb), % | 0 | |
77.1 to 81.2 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Sulfur (S), % | 0 to 0.050 | |
0 |
Tin (Sn), % | 0 | |
4.5 to 5.5 |
Zinc (Zn), % | 0 | |
0 to 0.0050 |