MakeItFrom.com
Menu (ESC)

SAE-AISI 1046 Steel vs. S44635 Stainless Steel

Both SAE-AISI 1046 steel and S44635 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1046 steel and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
240
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 14 to 17
23
Fatigue Strength, MPa 240 to 390
390
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
81
Shear Strength, MPa 410 to 450
450
Tensile Strength: Ultimate (UTS), MPa 660 to 740
710
Tensile Strength: Yield (Proof), MPa 370 to 610
580

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
4.4
Embodied Energy, MJ/kg 18
62
Embodied Water, L/kg 46
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 95
150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 990
810
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23 to 26
25
Strength to Weight: Bending, points 22 to 23
23
Thermal Diffusivity, mm2/s 14
4.4
Thermal Shock Resistance, points 23 to 25
23

Alloy Composition

Carbon (C), % 0.43 to 0.5
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Iron (Fe), % 98.4 to 98.9
61.5 to 68.5
Manganese (Mn), % 0.7 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8