MakeItFrom.com
Menu (ESC)

SAE-AISI 1055 Steel vs. C85200 Brass

SAE-AISI 1055 steel belongs to the iron alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1055 steel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
28
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 730 to 750
270
Tensile Strength: Yield (Proof), MPa 400 to 630
95

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
140
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
84
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
18
Electrical Conductivity: Equal Weight (Specific), % IACS 12
19

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
26
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 85
59
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1070
42
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
8.9
Strength to Weight: Bending, points 23
11
Thermal Diffusivity, mm2/s 14
27
Thermal Shock Resistance, points 23 to 24
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.5 to 0.6
0
Copper (Cu), % 0
70 to 74
Iron (Fe), % 98.4 to 98.9
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9