MakeItFrom.com
Menu (ESC)

SAE-AISI 1055 Steel vs. S39277 Stainless Steel

Both SAE-AISI 1055 steel and S39277 stainless steel are iron alloys. They have 61% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1055 steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 14
28
Fatigue Strength, MPa 260 to 390
480
Poisson's Ratio 0.29
0.27
Reduction in Area, % 34 to 45
57
Shear Modulus, GPa 72
80
Shear Strength, MPa 440 to 450
600
Tensile Strength: Ultimate (UTS), MPa 730 to 750
930
Tensile Strength: Yield (Proof), MPa 400 to 630
660

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
4.2
Embodied Energy, MJ/kg 18
59
Embodied Water, L/kg 46
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 85
240
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1070
1070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
33
Strength to Weight: Bending, points 23
27
Thermal Diffusivity, mm2/s 14
4.2
Thermal Shock Resistance, points 23 to 24
26

Alloy Composition

Carbon (C), % 0.5 to 0.6
0 to 0.025
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 98.4 to 98.9
56.8 to 64.3
Manganese (Mn), % 0.6 to 0.9
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2