MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. 2018 Aluminum

SAE-AISI 1060 steel belongs to the iron alloys classification, while 2018 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 220
120
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 10 to 13
9.6
Fatigue Strength, MPa 260 to 340
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 370 to 450
270
Tensile Strength: Ultimate (UTS), MPa 620 to 740
420
Tensile Strength: Yield (Proof), MPa 400 to 540
310

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 51
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
40
Electrical Conductivity: Equal Weight (Specific), % IACS 11
120

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 1.4
8.1
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 46
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 82
37
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 22 to 26
38
Strength to Weight: Bending, points 21 to 23
41
Thermal Diffusivity, mm2/s 14
57
Thermal Shock Resistance, points 20 to 24
19

Alloy Composition

Aluminum (Al), % 0
89.7 to 94.4
Carbon (C), % 0.55 to 0.65
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 98.4 to 98.9
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0.6 to 0.9
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15