SAE-AISI 1060 Steel vs. AWS E320LR
Both SAE-AISI 1060 steel and AWS E320LR are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is AWS E320LR.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 10 to 13 | |
34 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 72 | |
77 |
Tensile Strength: Ultimate (UTS), MPa | 620 to 740 | |
580 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
300 |
Melting Completion (Liquidus), °C | 1460 | |
1410 |
Melting Onset (Solidus), °C | 1420 | |
1360 |
Specific Heat Capacity, J/kg-K | 470 | |
460 |
Thermal Expansion, µm/m-K | 12 | |
14 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
36 |
Density, g/cm3 | 7.8 | |
8.2 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
6.2 |
Embodied Energy, MJ/kg | 19 | |
87 |
Embodied Water, L/kg | 46 | |
220 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 22 to 26 | |
20 |
Strength to Weight: Bending, points | 21 to 23 | |
19 |
Thermal Shock Resistance, points | 20 to 24 | |
15 |
Alloy Composition
Carbon (C), % | 0.55 to 0.65 | |
0 to 0.030 |
Chromium (Cr), % | 0 | |
19 to 21 |
Copper (Cu), % | 0 | |
3.0 to 4.0 |
Iron (Fe), % | 98.4 to 98.9 | |
32.7 to 42.5 |
Manganese (Mn), % | 0.6 to 0.9 | |
1.5 to 2.5 |
Molybdenum (Mo), % | 0 | |
2.0 to 3.0 |
Nickel (Ni), % | 0 | |
32 to 36 |
Niobium (Nb), % | 0 | |
0 to 0.4 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.020 |
Silicon (Si), % | 0 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.050 | |
0 to 0.015 |