MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. EN 1.0597 Cast Steel

Both SAE-AISI 1060 steel and EN 1.0597 cast steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is EN 1.0597 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 13
18
Fatigue Strength, MPa 260 to 340
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 620 to 740
670
Tensile Strength: Yield (Proof), MPa 400 to 540
400

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
53
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.7
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 46
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 82
100
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
430
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 26
24
Strength to Weight: Bending, points 21 to 23
22
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 20 to 24
21

Alloy Composition

Carbon (C), % 0.55 to 0.65
0
Iron (Fe), % 98.4 to 98.9
99.935 to 100
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Sulfur (S), % 0 to 0.050
0 to 0.030