MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. CC331G Bronze

SAE-AISI 1060 steel belongs to the iron alloys classification, while CC331G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 220
140
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Tensile Strength: Ultimate (UTS), MPa 620 to 740
620
Tensile Strength: Yield (Proof), MPa 400 to 540
240

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1000
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 51
61
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 19
53
Embodied Water, L/kg 46
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 82
97
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
250
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 26
21
Strength to Weight: Bending, points 21 to 23
19
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 20 to 24
22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0.55 to 0.65
0
Copper (Cu), % 0
83 to 86.5
Iron (Fe), % 98.4 to 98.9
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5