MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. C70400 Copper-nickel

SAE-AISI 1060 steel belongs to the iron alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
45
Tensile Strength: Ultimate (UTS), MPa 620 to 740
300 to 310
Tensile Strength: Yield (Proof), MPa 400 to 540
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
64
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
14
Electrical Conductivity: Equal Weight (Specific), % IACS 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 46
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 26
9.3 to 9.8
Strength to Weight: Bending, points 21 to 23
11 to 12
Thermal Diffusivity, mm2/s 14
18
Thermal Shock Resistance, points 20 to 24
10 to 11

Alloy Composition

Carbon (C), % 0.55 to 0.65
0
Copper (Cu), % 0
89.8 to 93.6
Iron (Fe), % 98.4 to 98.9
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5