MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. C83300 Brass

SAE-AISI 1060 steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 220
35
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 620 to 740
220
Tensile Strength: Yield (Proof), MPa 400 to 540
69

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
160
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
32
Electrical Conductivity: Equal Weight (Specific), % IACS 11
33

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
44
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 82
60
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
21
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22 to 26
6.9
Strength to Weight: Bending, points 21 to 23
9.2
Thermal Diffusivity, mm2/s 14
48
Thermal Shock Resistance, points 20 to 24
7.9

Alloy Composition

Carbon (C), % 0.55 to 0.65
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 98.4 to 98.9
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7