SAE-AISI 1060 Steel vs. N08020 Stainless Steel
Both SAE-AISI 1060 steel and N08020 stainless steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is N08020 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 10 to 13 | |
15 to 34 |
Fatigue Strength, MPa | 260 to 340 | |
210 to 240 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 72 | |
77 |
Shear Strength, MPa | 370 to 450 | |
380 to 410 |
Tensile Strength: Ultimate (UTS), MPa | 620 to 740 | |
610 to 620 |
Tensile Strength: Yield (Proof), MPa | 400 to 540 | |
270 to 420 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
300 |
Maximum Temperature: Mechanical, °C | 400 | |
1100 |
Melting Completion (Liquidus), °C | 1460 | |
1410 |
Melting Onset (Solidus), °C | 1420 | |
1360 |
Specific Heat Capacity, J/kg-K | 470 | |
460 |
Thermal Conductivity, W/m-K | 51 | |
12 |
Thermal Expansion, µm/m-K | 12 | |
15 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 9.6 | |
1.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 11 | |
1.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
38 |
Density, g/cm3 | 7.8 | |
8.2 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
6.6 |
Embodied Energy, MJ/kg | 19 | |
92 |
Embodied Water, L/kg | 46 | |
220 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 58 to 82 | |
83 to 170 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 430 to 790 | |
180 to 440 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 22 to 26 | |
21 |
Strength to Weight: Bending, points | 21 to 23 | |
20 |
Thermal Diffusivity, mm2/s | 14 | |
3.2 |
Thermal Shock Resistance, points | 20 to 24 | |
15 |
Alloy Composition
Carbon (C), % | 0.55 to 0.65 | |
0 to 0.070 |
Chromium (Cr), % | 0 | |
19 to 21 |
Copper (Cu), % | 0 | |
3.0 to 4.0 |
Iron (Fe), % | 98.4 to 98.9 | |
29.9 to 44 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 to 2.0 |
Molybdenum (Mo), % | 0 | |
2.0 to 3.0 |
Nickel (Ni), % | 0 | |
32 to 38 |
Niobium (Nb), % | 0 | |
0 to 1.0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.045 |
Silicon (Si), % | 0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.050 | |
0 to 0.035 |