MakeItFrom.com
Menu (ESC)

SAE-AISI 1064 Steel vs. ACI-ASTM CG12 Steel

Both SAE-AISI 1064 steel and ACI-ASTM CG12 steel are iron alloys. They have 66% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1064 steel and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 13
40
Fatigue Strength, MPa 300
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
78
Tensile Strength: Ultimate (UTS), MPa 720 to 730
550
Tensile Strength: Yield (Proof), MPa 470 to 480
220

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1040
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 46
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 81
180
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 630
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 26
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 25
12

Alloy Composition

Carbon (C), % 0.6 to 0.7
0 to 0.12
Chromium (Cr), % 0
20 to 23
Iron (Fe), % 98.4 to 98.9
60.3 to 70
Manganese (Mn), % 0.5 to 0.8
0 to 1.5
Nickel (Ni), % 0
10 to 13
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040