MakeItFrom.com
Menu (ESC)

SAE-AISI 1064 Steel vs. AISI 439 Stainless Steel

Both SAE-AISI 1064 steel and AISI 439 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1064 steel and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 13
23
Fatigue Strength, MPa 300
170
Poisson's Ratio 0.29
0.28
Reduction in Area, % 42 to 43
51
Shear Modulus, GPa 72
77
Shear Strength, MPa 430 to 440
310
Tensile Strength: Ultimate (UTS), MPa 720 to 730
490
Tensile Strength: Yield (Proof), MPa 470 to 480
250

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
890
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
25
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 19
34
Embodied Water, L/kg 46
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 81
95
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 630
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 26
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 25
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0.6 to 0.7
0 to 0.030
Chromium (Cr), % 0
17 to 19
Iron (Fe), % 98.4 to 98.9
77.1 to 82.8
Manganese (Mn), % 0.5 to 0.8
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1