MakeItFrom.com
Menu (ESC)

SAE-AISI 1064 Steel vs. CC499K Bronze

SAE-AISI 1064 steel belongs to the iron alloys classification, while CC499K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1064 steel and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
73
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 13
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 720 to 730
260
Tensile Strength: Yield (Proof), MPa 470 to 480
120

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
920
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 51
73
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 19
51
Embodied Water, L/kg 46
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 81
27
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 630
65
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25 to 26
8.1
Strength to Weight: Bending, points 23
10
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 25
9.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0.6 to 0.7
0
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 0
84 to 88
Iron (Fe), % 98.4 to 98.9
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Manganese (Mn), % 0.5 to 0.8
0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0