MakeItFrom.com
Menu (ESC)

SAE-AISI 1065 Steel vs. AISI 444 Stainless Steel

Both SAE-AISI 1065 steel and AISI 444 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1065 steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 230
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 14
23
Fatigue Strength, MPa 270 to 340
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
78
Shear Strength, MPa 430 to 470
300
Tensile Strength: Ultimate (UTS), MPa 710 to 780
470
Tensile Strength: Yield (Proof), MPa 430 to 550
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
930
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
23
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 90
95
Resilience: Unit (Modulus of Resilience), kJ/m3 490 to 820
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 28
17
Strength to Weight: Bending, points 23 to 24
17
Thermal Diffusivity, mm2/s 14
6.2
Thermal Shock Resistance, points 25 to 27
16

Alloy Composition

Carbon (C), % 0.6 to 0.7
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Iron (Fe), % 98.3 to 98.8
73.3 to 80.8
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8